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Abstract
Nonlinear excitations in a one-dimensional deformable, discrete, classical,
ferromagnetic chain are numerically investigated. In the continuum limit
the equations of motion are reduced to a Klein–Gordon equation, with a
Remoissenet–Peyrard substrate potential. From a numerical computation of
the discrete system with a suitable choice of the deformability parameters, the
soliton solutions are shown to exist and move both with a monotonic oscillating
(i.e. nanopteron) and a monotonic nonoscillating tail, and also with a non-
oscillating tail but with a splitting propagating shape. The stability of all
these various soliton shapes is confirmed numerically in a range of the reduced
magnetic fields greater than for a rigid magnetic chain i.e. 0 � b � 0.33.
From a kink–antikink and a kink–kink colliding simulation, we found various
effects, including a bound state of a kink and an antikink, as well as a moving
kink profile with higher topological charge that appears to be the bound state
of two kinks. For some values of the deformability parameter, with a suitable
choice of the initial velocity, we observed that the presence of an internal mode
leads to the combination of an attractive and a repulsive phenomenon, that arises
when the kink–kink collision is engaged. The fact that this collision happens
only in the centre of the magnetic chain with the presence of a minimal distance
between the two kinks as long as the collision is produced is also a feature of
the deformability effect in the dynamics of a magnetic chain. From our results,
it appears that the value of the shape parameter of the substrate potential or
the modified Zeeman energy is a factor of utmost importance when modelling
magnetic chains.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

It is commonly well acknowledged that the investigation of nonlinear waves and soliton-
like excitations has provided fruitful and interesting outcomes in many areas of condensed
matter physics [1]: dislocation in crystals [2–4], planar domain walls in ferromagnets [5] and
ferroelectrics [6–8], nonlinear spin waves [9, 10], charge carriers in weakly pinned charge-
density wave condensates [11], incommensurate systems [12, 13] and bond-alternation domain
walls in poly-acetylene [14], to cite just a few examples. Two-dimensional (2D) systems, as
well as one-dimensional (1D) models, have attracted great attention.

In the context of 2D models that are applied to magnetic films and superlattices, the
interest has been driven by enormous experimental advances in the growth and characterization
techniques of these materials, as well as investigations which have led to the realization of
high quality samples and the discovery of many new and interesting phenomena, such as
the oscillatory exchange coupling between ferromagnetic films that are separated by non-
magnetic spacers [15] and the giant magneto-resistance effect [16]. Owing to these advances,
the determination of the ground state of the magnetic model through a uniaxial antiferromagnet
in the presence of an applied magnetic field was formulated as a 2D area-preserving map; the
results were consistent with the experimental data on Fe/Cr(211) superlattices [17] and other
theoretical works [18, 19]. The advances made in the characterization of these magnetic
materials help in setting up good tools for magnetic bubble propagation through solitary
configurations with particle-like properties. These solitary magnetic bubbles have played,
in recent years, a vital role in the rapid advancement of information technology. In the
specific context of the 1D model, nonlinear excitations in a quasi-one-dimensional magnetic
system have received much theoretical, experimental and computational attention in recent
years [9, 20–24].

In most of the aforementioned studies related to the dynamics of magnetic chains, the part
of the symmetry-breaking potential introduced into the system through the Zeeman energy
contribution under the action of an external magnetic field leads to the sine–Gordon picture
when the continuum approximation is used and the anisotropy is assumed to be extremely
strong. The important question of relaxing the simplified assumptions mentioned above has
been much investigated, mostly by treating these assumptions as if they were independent
from each other. The investigation of the ferromagnetic chain with finite anisotropy in the
classical continuum limit [25–28] revealed the existence of out-of-plane instabilities, as well
as a soliton spectrum quite different from the sine–Gordon results. Similar studies of the
quantum sine–Gordon equation [29], as well as a discrete sine–Gordon chain [30, 31], have
contributed to our understanding of the modelization of a 1D solid.

However, in real magnetic systems, whenever the above-mentioned assumptions are used
in order to approach the macroscopic description of their dynamics, it remains a fact that, for
a more accurate investigation, the possibility that the potential can deviate strongly from the
sinusoidal one should be taken into account. This behaviour can be induced in the system by
the generation of the nonlinear harmonics in the sinusoidal potential that are due to microscopic
structures and the influence of various interactions. The magneto-elastic interactions can arise,
for instance, either from the strain derivatives of the crystalline electric field, as a one-ion
effect, eventually leading to a two-ion interaction, or from a distance-dependent-exchange
interaction or otherwise from a local moment formation or change. Such a microscopic
situation may lead to isotropic, as well as anisotropic, macroscopic deformations. Among
the different effects, it is often normal to distinguish precisely the magneto-volume effect,
which is a spontaneous deformation at a magnetic ordering, the positive and negative Joule
magnetostriction, which is the field-induced parallel and perpendicular deformation of the
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material, and thermal expansion or contraction of magnetic origin. All these various effects
lead to new shapes of the domain wall that are consequences of the appearance of new harmonics
on the substrate potential [32, 33].

In such a context as underscored above, recently, one of us [34] began by putting forward
a novel model in which the Hamiltonian was characterized by the nearest neighbour exchange
energy, the single-ion anisotropy and a deformable Zeeman energy. In that paper, the attention
was focused on the situation where the Zeeman energy can be varied continuously as a function
of the deformability parameter r . While taking the continuum limit, he showed that such a
magnetic system could be mapped approximately onto the one-dimensional deformable sG
equation at extremely low temperatures, from which implicit soliton solutions that depend
on the parameter r could be derived. In spite of the novelty of that model, it was somewhat
limited in its applicability to a wide range of real magnetic systems. Pursuing then the same
idea with a spirit of generalization, we have very recently introduced a 1D spin model with
a modified Zeeman energy that led to the nonlinear deformable periodic substrate potential.
We have shown that the range of the deformability parameter and, consequently, the shape
of the substrate potential is a factor of utmost importance when modelling a magnetic
physical system [35]. Henceforth, the range of the magnetic field for the stability of the
nonlinear excitations propagating in the system is enhanced. The static critical magnetic
field disappears for the shape potential parameters r �= 0. Moreover, the model shows very
different phenomenologies that comprise a ballistic, a diffusive and a stochastic behaviour.
Therefore, the deformability provides insight into unusual behaviours that may be typical of
multivariate dynamical magnetic systems. Hence, important and interesting new features are
then introduced in the dynamics of ferromagnetic chains through the propagation and the
collision processes of the findings.

Our aims in this paper are firstly to show that limits found for sG magnetic solitons can be
extended if one considers a generalized model, confirming therefore our result obtained in [35],
secondly to show that properties determined for one-component deformable soliton model are
still valid for a magnetic system where two degrees of freedom are coupled and finally to show
also that carrying out a theoretical analysis through numerical simulation of the solitary waves
including their interactions in a discrete ferromagnetic chain under deformability effects also
leads to new features.

The material of this paper is organized as follows. In section 2, we describe the model and
give its different limits and, next, we derive the discrete equations of motion. In the continuum
limits, the implicit kink solutions are calculated exactly. Section 3 is devoted to the numerical
studies of the soliton-like excitations in the discrete magnetic chain under deformability effects.
We investigate their stability and particle-like interaction through collision processes. We
consider both moving kink solutions with monotonic and oscillating tails. In section 4, we
give a summary and our concluding remarks.

2. The model

In order to find a starting point that would pave the way for a classical theory for a more
suitable model that can be applied to realistic one-dimensional magnetic systems, let us start
by presenting some of the well known models that are used to describe magnetic spin chains.

To introduce the simplest of these models in which a relationship between magnetic domain
walls and solitons, as special solutions, can be established, let us consider a magnetic chain
with the Hamiltonian [5]

H = −J
∑

i

�Si · �Si+1 + V (�Si ). (2.1)
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Here, the first term represents the ferromagnetic (J > 0) or antiferromagnetic (J < 0)

Heisenberg exchange interaction between neighbouring spins denoted by the vectors �Si and
�Si+1. The second term is a single-spin potential that can have various forms.

If V (�Si ) = A
∑

i (Sz
i )

2, with J and A that are positive and negative constants, respectively,
then the total Hamiltonian can describe a magnetic chain with Ising (easy-axis) symmetry. In
a classical description, this Hamiltonian has two equivalent ground states Sz

i = ±S. The
configuration describing the transition between these equivalent ground states is the static
domain wall. Its structure is determined from a competition between the exchange energy J
that favours a broad wall and the anisotropy energy A that favours a narrow wall. On the other
hand, we have a planar Heisenberg system if A has a negative sign (A < 0).

Next, we consider a model of a one-dimensional magnet with the following expression
for spin potential V (�Si ) [20]:

V (�Si ) = A
∑

i

(Sz
i )

2 − gµB Bx

∑
i

Sx
i . (2.2)

Thus, in the total Hamiltonian, the main effect of the magnetic field is to break the continuous
symmetry. At temperature T < (AJ)

1
2 , the single-ion anisotropy A > 0 enforces a small

z component of spin and therefore XY -like behaviour. In addition to this condition, if the
inequality A

J S(S+1)
� 4π2 is fulfilled, then quantum effects can be neglected. The spins can

be treated as classical vectors

�Si (z, t) = S(cos(θi) cos(ϕi), cos(θi) sin(ϕi), sin(θi)). (2.3)

At zero magnetic field and for sufficiently low temperatures, the dynamic behaviour of
this model is dominated by small oscillations in the difference angles ϕi+1 − ϕi . The angle ϕi

itself, however, can float over the entire range of [0, 2π] owing to continuous symmetry in
the XY plane, leading then to a damping of the corresponding oscillations of the in-plane spin
components. When the applied magnetic field is non-nil, then the continuous symmetry is
broken, and stable magnons, i.e. harmonic oscillations about ϕi = 0, result for increasing and
highest magnetic field. However, for moderate fields, satisfying gµB B J � T 2, the occurrence
of complete turns in ϕi remains likely. This intermediate region mostly deals with the soliton
theory, based on the equivalent, which is established in the long-wavelength limits, in the
system considered to a sine–Gordon (sG) system. To this end, it is necessary to relate the
equations of motion for the spin degrees of freedom ϕi , θi to a sine–Gordon equation. In the
continuum limit of long wavelength, qa0 � (2A/J )

1
2 (where a0 is the lattice spacing) and for

magnetic fields gµB B � 2A, the equations of motion read

∂2ϕ

∂z2
− 1

c2

∂2ϕ

∂ t2
= m2 sin(ϕ) (2.4a)

θ = 1

2AS

∂ϕ

∂ t
. (2.4b)

Here, c = a0S(2AJ )1/2 is the characteristic velocity and m = {gµB B/J Sa0}1/2 plays the role
of the mass. The equation of motion (2.4a) follows from the Hamiltonian density (with the
energy measured in units of J S2 and length units of the lattice spacing)

H = 1

2

{(
∂ϕ

∂z

)2

+
1

c2

(
∂ϕ

∂ t

)2}
+ m2(1 − cos(ϕ)). (2.5a)

In the above Hamiltonian form, the last term is the so-called sine–Gordon substrate potential,
i.e.

V (ϕ) = m2(1 − cos(ϕ)). (2.5b)
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From Hamiltonian (2.1), another way of breaking the symmetry in the easy plane is to introduce
an additional single-ion anisotropy in the x-axis. Moreover, with this new model, when a
second anisotropy axis is considered, it leads to the following form for V (�Si ):

V (�Si ) = A
∑

i

(Sz
i )

2 − C
∑

i

(Sx
i )2 − gµB Bx

∑
i

Sx
i . (2.6)

Here, in the resulting total Hamiltonian, J , A and C are positive constants, and the other
notations are standard. This model is valid either for a 1D spin configuration of a 3D
ferromagnet depending on a single coordinate z only, or for a 1D ferromagnet such as the
S = 1 compound [(CH3)3NH]NiCl3·2H2O, whose magneto-crystalline properties have been
investigated in detail by Hoogerbeets et al [36]. In the classical limit and at low temperatures,
Magyari and Thomas [37] have shown that in the limits a = C

A � 1 and b = gµB Bx

2DS � 1 the
equations of motion related to the rotational degree of freedom of the spins are

∂2ϕ

∂z2
− ∂2ϕ

∂ t2
= b sin(ϕ) +

1

2
a sin(2ϕ) (2.7a)

θ = ∂ϕ

∂ t
. (2.7b)

Equation (2.7a) is a double sine–Gordon (dsG) equation. It is also possible from the form

V (�Si ) = A
∑

i

(Sz
i )

2 − gµB By

∑
i

Sy
i − gµB Bx

∑
i

(−1)n Sx
i (2.8)

of V (�Si ) to modelize a 1D antiferromagnet with single-ion anisotropy in an external
magnetic field, and also under a transverse or staggered magnetic field. Using then the spin
parametrization introduced by Mikeska [20], the equation (2.7a) is the equation of motion that
describes the dynamics of the in-plane angles. The corresponding Hamiltonian density (with
the energy measured in units of J S2 and length units of the lattice spacing) is given by

H = 1

2

{(
∂ϕ

∂z

)2

+
1

c2

(
∂ϕ

∂ t

)2}
+ λ sin2(ϕ) + 2ν(1 − cos(ϕ)). (2.9)

In this Hamiltonian, the substrate potential is the dsG potential given by

V (ϕ) = λ sin2(ϕ) + 2ν(1 − cos(ϕ)). (2.10)

It can be observed that the difference between the potential given in equation (2.10) and that
of equation (2.5b) comes from the fact that there is a second harmonic that is related to the
presence of an additional equilibrium position on the substrate potential. This dsG potential
then displays two harmonics with parameter λ that can be varied.

From the models of the spin chain presented above, it is possible to describe the dynamics of
most of the 1D magnetic materials,but, unfortunately, for most of these materials,experimental
checks of theoretical prediction are either inconsistent or not available. For instance, although
a critical value of the applied magnetic field was theoretically established as b = 1/3 for
the CsNiF3 material [25, 26], it has not been proven experimentally [5]. The reason for this
inconsistency comes from the fact that those theoretical models are too simple to represent
real specimens, while real samples are too ‘dirty’ to be describing a reliable theoretical model.
Very often, if a more realistic model is used, the results become too complex to have a clear
physical interpretation. On the other hand, neglecting the leading effects may lead to misleading
theoretical predictions. The ideal system is one in which the leading physical features are well
represented by a simple theoretical model.

On varying the parameter λ of equation (2.10), it can be realized that the profile would
change [35]. This situation then leads us to think about a deformable model. With this potential,
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that comes from a spin chain model,we have been motivated to find a more generalized potential
that would include supplementary harmonics. To this end, let us recall the Remoissenet–
Peyrard potential that presents the following compact form:

VRP(ϕ, r) = (1 − r)2 1 − cos ϕ

1 + r2 + 2r cos ϕ
, |r | < 1. (2.11)

From its profile given in [35], we notice that it displays constant amplitude with period 2π .
The trivial cases V (r = 1) = 0 and V (r = −1) = 2 are ignored. This potential can be
expanded in a Fourier series as

V (ϕ, r) = (1 − r) + (1 − r2)(− cos ϕ + r cos 2ϕ + · · · + (−1)rn−1 cos nϕ + · · ·). (2.12)

Any choice of the parameter r in the range −1 < r < 1 enables one to change the form of the
potential (i.e. to vary the weight of its harmonics) while keeping its amplitude constant and
equal to two. It also happens that when r = 0, V (ϕ, 0) = 1 − cos ϕ, i.e. the potential reduces
to the familiar sG potential. One can also note that the leading term in Fourier expansion (2.12)
of the potential is the sG harmonics. On the other hand, when r → 1, the potential would
become extremely sharp. When r → −1, the inverse result is obtained, i.e. we have a potential
with a flat bottom. For small values of r , the potential reduces to the dsG potential as

V (ϕ) ∝ − cos ϕ + r cos 2ϕ. (2.13)

Though the supplementary harmonics in equation (2.11) give rise to a trend quite different
from that of sG or dsG models, there exist general features inherent in this process associated
with the shape parameter r which enables the development of a general concept, including spin
deformable models in the same spirit as the deformable model of the nonlinear Klein–Gordon
system.

The model we considered in this paper is a discrete chain of classical spins with planar
single-ion anisotropy. It is also subjected to deformability that is introduced into the system
through a deformable Zeeman energy. We take into account exchange interactions between
nearest neighbours’ spins only, and we write the Hamiltonian in the following form:

H = −J
∑

i

�Si · �Si+1 + A
∑

i

(Sz
i )

2 + gµB(1 − r)2 Bx · S
∑

i

(1 − S−1 Sx
i )

1 + r2 + 2r S−1Sx
i

. (2.14)

Here, S represents the modulus of the atomic spin (S = |�Si | in units of h̄), the index x
on the magnetic field component indicates that the magnetic field is applied in the X axis
and r is the shape parameter that varies in the range −1 < r < 1 as previously introduced
by Remoissenet and Peyrard [38, 39]. J , A and all other notations are standard [5]. The Z
direction is the direction of the chain and the easy plane is the (XY ) plane. In the last term of the
Hamiltonian (equation (2.14)), that corresponds to the deformable Zeeman term, the presence
of S−1 Sx

i = cos(θi) cos(ϕi) in the denominator comes from the mathematical recombination of
the Taylor expansion of the sinusoidal potential that is subject to the above mentioned nonlinear
harmonic generation. Before proceeding, it is necessary, as we did in [35], to notice the three
important limits of this Hamiltonian.

Case 1. When the deformability parameter r tends to unity, the deformable Zeeman energy
becomes zero. The total Hamiltonian then reads

H = −J
∑

i

�Si · �Si+1 + A
∑

i

(Sz
i )

2.

Consequently, two situations can occur. We first have an Ising-like system if the anisotropy
constant A is negative (A < 0), or secondly we have a planar Heisenberg system if A has a
positive sign (A > 0). In this latter case, we notice that the magnetic compound should behave
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as if it is not subjected to any magnetic field and therefore it may display a paramagnetic
structure. For deformability parameter values close to one, our model describes a magnetic
compound for which the deformability effects tend to encumber that of the applied magnetic
field.

Case 2. For values of r tending to −1, we recover once more a Heisenberg model Hamiltonian
with a planar anisotropy, but here with the difference that there is an additional term, which
is denoted as Hdef and reads Hdef = 2gµB Bx SN . This expression just shifts the energy of
the system without any influence either on the dynamics or on the stability of the system
under modelization. In the context of a system that displays an intrinsic magnetic gap, this
Hamiltonian limit can be very useful because this gap can be absorbed or cancelled by the
residual fundamental magnetic energy. This situation is always found in ferrimagnets with a
great tendency to ferromagnetic order.

Case 3. When r = 0, the last term of equation (2.14) becomes Hdef = gµB Bx
∑

i (S − Sx
i ).

In this last term we notice the presence of the ground state energy and the Zeeman energy.
Hence, from our deformable model, when the deformability parameter vanishes, we recover
the Heisenberg model with Zeeman energy and a planar anisotropy in addition to a ground state
energy. Fundamentally the presence of the ground state energy here does not matter because
it has no influence, either on the magnetic structure or on the spin dynamic stability.

This Hamiltonian, then, turns out to be more suitable because it allows study of the
dynamics of a wide range of ferromagnetic and antiferromagnetic systems that belong to the
class of the 1D model. It also appears as a sort of interpolation between an Ising model and a
planar Heisenberg model.

2.1. Equations of motion

As mentioned above, the framework of our present considerations here is the classical spin
theory where the spins are usual three-dimensional (3D) vectors �Si of constant length S,
i.e. neglecting quantum effects ( A

J S(S+1)
� 4π2) [5, 20]. In classical notation, we represent

the spin field in spherical coordinates, i.e. as given in equation (2.3), with angles in the ranges
0 � θi � π and 0 � ϕi � 2π .

Then, using the undamped Bloch equations for the spin vectors,

h̄
d �Si

dt
= �Si� �Fi (2.15)

with the relation

�Fi = −∂ H

∂ �Si

(2.16)

for the effective field, we have that

�Fi = J (�Si+1 + �Si−1) − 2ASz
i �ez +

gµBSBx(1 − r2)�ex

(1 + r2 + 2r S−1Sx
i )2

. (2.17)

Here, �ex (�ez) is the unit vector along the X axis (the Z axis). While �Fi represents the effective
field acting on each spin, the expression �Si� �Fi represents the torque on the spin at lattice site
i , respectively. Therefore, after some mathematical combinations between the spherical spin
coordinate and equations (2.17) with (2.15), the equations of motion are [22, 24, 32–34]
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h̄

J S

dϕi

dt
cos(θi) = sin(θi)[cos(θi+1) cos(ϕi+1 − ϕi ) + cos(θi−1) cos(ϕi−1 − ϕi)]

− cos(θi)[sin(θi+1) + sin(θi−1)]

+
2AS

J
cos(θi) sin(θi) +

gµB Bx

J S2

(1 − r2)2 sin(θi) cos(ϕi)

[1 + r2 + 2r cos(θi) cos(ϕi )]2
(2.18a)

h̄

J S

dθi

dt
= cos(θi+1) sin(ϕi+1 − ϕi) + cos(θi−1) sin(ϕi−1 − ϕi)

− gµB Bx

J S2

(1 − r2)2 sin(ϕi)

[1 + r2 + 2r cos(θi) cos(ϕi)]2
. (2.18b)

The set of coupled nonlinear differential-difference equations (2.18a) and (2.18b) defines the
collective excitations for the in-plane angle ϕi and the out-of-plane angle θi of a discrete
lattice. It is extremely difficult to perform a complete analysis of the system of equation (2.18)
analytically. Therefore, only a numerical simulation can allow a detailed study of the
topological solitons travelling in the system. For this purpose, we first need to carry out
some calculations in the continuum limit.

2.2. Analytical solution in the continuum limit

While the model under study is discrete, it is important to derive the continuum limit
because it helps in establishing the analytical calculation of the implicit soliton solutions that
would be used as initial conditions for our numerical computation. Using then the classical
approximation at sufficiently low temperature (T < (AJ )1/2), in the continuum limit (where
the length scale rotation J S/gµB Bx � 1), equations (2.18a) and (2.18b) can be reduced to
the following partial nonlinear coupled differential equations:

ϕτ cos θ = −θηη + (1 − ϕ2
η) sin θ cos θ + b(1 − r2)2 sin θ cos ϕ

[1 + r2 + 2r cos θ cos ϕ]2
(2.19a)

θτ = −ϕηη cos θ − 2θηϕη sin θ − b(1 − r2)2 sin ϕ

[1 + r2 + 2r cos θ cos ϕ]2
. (2.19b)

In these equations, we have introduced the dimensionless quantities η =
√

2A
J

Z
a (where a

is the lattice spacing), τ = ( 2AS
h̄ )t and b = gµB Bx

2AS . The sine–Gordon approximation can
then be obtained at the order ε2 if ∂

∂η
, ∂

∂τ
∼ ε(ε � 1) (which corresponds to the continuum

approximation for permanent profile solutions), θ ∼ ε and b ∼ ε2.
Equations (2.19a) and (2.19b) then reduce to

ϕηη − ϕττ − b(1 − r2)2 sin ϕ

[1 + r2 + 2r cos ϕ]2
= 0 (2.20a)

θ = ϕτ . (2.20b)

Here, b and r are the two constants needed to specify the time evolution of the spin
excitations. It is therefore obvious to see that the last term of equation (2.20a) is the first
derivative with respect to ϕ of the Remoissenet–Peyrard potential (RP) [38, 39] given in
equation (2.11). Equation (2.20a) is the well known deformable sG equation; it has solutions
in the form of large amplitude travelling waves (kinks), low amplitude linear modes (spin waves
or magnons) and breathers [38, 39]. This equation also shows that in this approximation the
ferromagnetic solitary excitations are composed of two families of implicit kink solutions,
with the velocity v given in terms of moving coordinate ξ = η−vτ , which are travelling wave
rotations of the spin through 2π within the easy plane. Under this assumption, equation (2.20b)
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informs us on the fact that the spin tilt out of the easy plane will be proportional to the kink
translation velocity. The implicit solutions are [38, 39]

γ ξ

d(1)
= sgn(ϕ − π)

{
(1 − α2)

1
2

α
tan−1

[
(1 − α2)

1
2

(α2 + tan2(ϕ/2))
1
2

]
+ tanh−1

[
α

(α2 + tan2(ϕ/2))
1
2

]}

(2.21a)

with the rest energy

E (1)
s = 8A′√bα(1 − α2)−

1
2 tan−1

[(
1 − α2

α

) 1
2
]

for − 1 < r � 0 (2.21b)

and

γ ξ

d(2)
= sgn(π − ϕ)

{
(1 − α2)

1
2 tanh−1

[
(1 − α2)

1
2

(1 + α2 tan2(ϕ/2))
1
2

]

− tanh−1

[
1

(1 + α2 tan2(ϕ/2))
1
2

]}
(2.21c)

with the rest energy

E (2)
s = 8A′√bα(1 − α2)−

1
2 tanh−1

[(
1 − α2

α

) 1
2
]

for 0 � r < 1 (2.21d)

and

α = 1 − |r |
1 + |r | (2.21e)

d(1) = d0α, d(2) = d0/α, d0 = 1√
b
,

A′ = h̄2

2Aa
and γ = (1 − v2)−1/2.

(2.21f)

The out-of-plane component remains defined by equation (2.20b) for both of the implicit
in-plane solutions.

Let us mention that, since the Remoissenet–Peyrard potential presents more than two
harmonics [38], such a model can be applied to a bi-layer film of Ni/Pd, for which Tsukamoto
et al [40] have shown by molecular dynamic analysis that the perpendicular magnetic
anisotropy is related to the amount of stress in each Ni layer, and consequently the distribution
potential between two sites on an fcc(111) and an fcc(100) surface presents a shape with
many harmonics. In the case of the Fe/Cr (211) superlattice system that is isomorphic to a
classical two-sub lattice uniaxial antiferromagnet, the intrafilm interaction keeps all the spins
belonging to the same film parallel to each other. Then, a single layer can represent each film.
Hence, the determination of the ground state of the three-dimensional superlattices reduces
to a one-dimensional problem in the direction normal to the film surfaces. Therefore, the
Hamiltonian that is defined by equation (2.14) becomes suitable not only for the well studied
CsNiF3 material [5], but also for such a system.

Since the validity of the continuum limit and other approximations, however, can only
be tested by comparison with numerical calculations, we are left with a central question of
the physical problem described by the discrete non-integrable system of equations (2.18a)
and (2.18b) for our magnetic chain, namely: what is the signature of the implicit soliton
solution on the dynamics of the magnetic chain for different values of the parameter r .
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3. Numerical experiments

In this section, we present the results of a numerical experiment in a discrete deformable
magnetic chain. The validity of the analytical result obtained from the continuum
approximation is discussed in detail. In order then to investigate the dynamics of a single
implicit kink soliton, as well as its collision with other kinks and antikinks,we are going to solve
numerically the set of coupled nonlinear differential-difference equations of motion (2.18a)
and (2.18b). These coupled differential-differenceequations are a consequence of the presence
of a second degree of freedom θ . In such a system, the role of the second component may be
affected by the strength of the magnetic field. We will show to what extent the properties of
the one-component soliton model are preserved in a two-component magnetic system.

3.1. Computer-simulation details

Our numerical calculations have been done through a computer-simulation program to study the
dynamics of the implicit kink (antikink) soliton on a cyclic magnetic chain which is constituted
of 160 spins. In physical application, a minimum distance scale that leads to discreteness
effects naturally occurs (e.g. lattice constant). Therefore, in these simulations, the degree of
discreteness is controlled by the ratio γ /d(i) (where i = 1, 2), and d(i) is also a function
of the reduced magnetic field and the parameter r (see equations (2.21e) and (2.21f )). In
order to control the discreteness effect arising from the system, for a given velocity, we chose
particular values of the parameter d(i). For instance, in some cases the physical parameters
that can induce the discreteness effects were chosen in order to keep the implicit static soliton
width in a range of 10–20 spins during the complete run. Let us introduce, as an example,
the following set of parameters of the CsNiF3 structure, namely [13] J = 23.6 K, A = 4.5 K
and S = 1. In addition, working with the cyclic magnetic chain presupposes that we chose
periodic boundary conditions and an offset of 2π at chain ends is needed.

As far as equations (2.18a) and (2.18b) are concerned with the description of the subsequent
time evolution of the in-plane and the out-of-plane excitations, the origin of the energy scale
of our discrete ferromagnetic chain is chosen from the uniform ferromagnetic state. Its
dimensionless form is given in terms of the in-plane and the out-of-plane angle components
by E = ∑

i Ei , with

Ei = 1 − cos(θi) cos(θi+1) cos(ϕi+1 − ϕi) − sin(θi) sin(θi+1)

+ 1 − cos(θi) cos(θi−1) cos(ϕi−1 − ϕi ) − sin(θi) sin(θi−1)

+ a2
sin2(θi)

2
+ a3(1 − r)2 1 − cos(θi) cos(ϕi)

(1 + r2 + 2r cos(θi) cos(ϕi))
(3.1)

where a2 = 2A
J , a3 = gµB Bx

J S and the index (i ) stands for the lattice sites. With a suitable choice
of the time step, this energy is a conserved quantity. Therefore, as in [35], it was frequently
monitored in our simulations to insure an accuracy of about 0.01% for the fourth-order Runge–
Kutta scheme.

The initial conditions, which are typically at time t = 0, and initial profiles of the in-
plane and the out-of-plane component of the spin deviation are obtained by using the implicit
solutions (see equations (2.21)).

For the numerical implementation of these implicit solutions, the Newton–Raphson
scheme, which is the approach used by Remoissenet and Peyrard [38], or a pseudo-spectral
approach can be chosen [41]. However, these approaches seem to be limited because these
methods remain just an approximation. We used a direct method instead and it turned out
to represent a 2π-kink soliton when r = 0 more accurately. To this end, once we have the
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velocity v, we next define a set of discrete values of the in-plane component in such a way that
the interpolation points of lines are given by

ϕi = 2π i

N
(3.2)

with i ∈ [0, . . . , N] and N = 160 the spin–lattice size. We then use this definition of ϕi in the
discrete version of equations (2.21a) and (2.21c) given by

ξi = sgn(ϕi − π)
d(1)

γ

{
(1 − α2)

1
2

α
tan−1

[
(1 − α2)

1
2

(α2 + tan2(ϕi/2))
1
2

]

+ tanh−1

[
α

(α2 + tan2(ϕi/2))
1
2

]}
(3.3a)

for −1 < r � 0 and

ξi = sgn(π − ϕi )
d(2)

γ

{
(1 − α2)

1
2 tanh−1

[
(1 − α2)

1
2

(1 + α2 tan2(ϕi/2))
1
2

]

− tanh−1

[
1

(1 + α2 tan2(ϕi/2))
1
2

]}
(3.3b)

for 0 � r < 1.
Equations (3.2), (3.3a) and (3.3b) allow us then to recover, for each amplitude of ϕi ,

its corresponding localization on the lattice site ξi , for different values of the deformability
parameter. At this step we shall reiterate that the out-of-plane component is defined by

θi = dϕi

dt
= −v

dϕi

dξi
. (3.4a)

Therefore, it can be numerically extracted through the following relation:

θi = −v
ϕi+1 − ϕi−1

(ξi+1 − ξi−1)
(3.4b)

where v represents the reduced effective velocity of the soliton moving in the spin–lattice.
Therefore, in the present simulation, we are able to test the validity of the implicit solutions
through their propagation in the discrete chain for different values of the parameter r and the
reduced magnetic field b.

3.2. Outcome of the analytical solutions in the discrete deformable spin chain

In this section we present results of numerical treatment in the case of both strong and weak
coupling between neighbouring spin so that the continuum approximation is either valid or
not. When the continuum approximation is valid, the system exhibits a free-kink propagation
scheme with a shape that is very close to the initial profile. However, when it is not valid, the
topological soliton involving in the spin–lattice may then present either a splitting shape while
moving or a kink moving with an oscillating background for the in-plane component, while
the shape of the out-of-plane component displays a breather shape instead of a simple pulse
of the initial conditions.

3.2.1. Magnetic solitary wave stability limit. Magyari et al [25, 26] have shown that magnetic
solitons have a reduced stability range with respect to standard sine–Gordon solitons. There
exists a critical magnetic field above which they become unstable. We have tested numerically
the conditions of existence of solitons in the deformable model. They are summarized in
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Figure 1. Stability diagram where the critical reduced magnetic field bc is plotted as a function
of the deformability parameter r in the range −1 < r < 1. It displays the region of stability of
solitary waves. Here the initial conditions are based on the analytical solution of the continuum
approximation with an initial velocity that should not exceed v = 0.5 for r > 0 and v = 0.75 for
r < 0.

figure 1 where a stability diagram is set up. From this figure obtained with the CsNiF3

material parameters, we observe that, when r > 0, the critical value of the reduced magnetic
field increases with increasing deformability parameter up to a value of bc = 0.96 for r = 0.9.
For r < 0, this critical value also increases with reducing values of the deformability parameter
but after the value of the shape parameter r = −0.5, where it reaches the value of the reduced
critical magnetic field of bc = 0.6, it starts decreasing to a value of bc = 0.33 for r = 0.9
that also corresponds to the critical value of the reduced magnetic field when r = 0. This
decreasing value of bc when r < −0.5 can be understood in the sense that, in this range
of parameter, it happens that the system displays strong discreteness effects whenever the
discreteness parameter is monitored. But, due to the fact that the minimal value of bc when
r is negative remains equal to the case of r = 0, the range of stability remains increased.
Finally, it is clear from this figure that one of the main effects of the deformability is to induce
a larger range of the reduced magnetic field for the existence of the solitary waves. Therefore,
depending on the final shape of the magnetic solitons when the deformability is considered
in a (1D) Heisenberg chain, the range of their stability while propagating is considerably
enhanced. It is worth mentioning that for positive values of r , to increase the range of stability,
it was necessary to use initial conditions with velocity not higher than v = 0.65. For greatest
velocities, the motion of the soliton slows down. Their instability is obtained for the highest
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Figure 2. Maximum and minimum mean propagation velocity of the resulting soliton against
the deformability parameter (r) for all the reduced magnetic field with range [0, 0.61]. Here we
proceeded in our simulation by computing, for a given value of the deformability parameter, all the
velocities of the solitary waves for all the values of the magnetic field. For a given magnetic field
we let the initial condition propagate for all values of initial velocities in the range of 0 < v < 0.9.
At the end we retained both the maximal and the minimal velocity. Next we increase the magnetic
field and restart the process in order to come out only with the maximal and the minimal value of
the effective soliton velocity for a given value of r .

magnetic field. Thus, the system intrinsically selects the velocity of the magnetic soliton
propagating in the chain.

3.2.2. Free kink and splitting kink propagation. As we can observe in the stability diagram
of figure 1, there exists a large range of the deformability parameter r for which the in-plane
component propagates for a very long time without a sensible change from its initial profile.
Only the out-of-plane component may propagate with a slight radiation of magnons in the
lattice. This tendency to long life of the wave propagating in the chain is a good indication of
a possible great stability of the kink in our deformable magnetic spin system; this is possible
even for very large values of the magnetic fields compared to those allowed for a rigid magnetic
chain. In figure 2, we plotted the maximal value and the minimal value of the effective velocity
of the propagating wave as a function of the deformability parameter (r) for all the reduced
magnetic field (b) in the range 0 � b � 0.61. From the schematic plot of figure 2 it follows
that the discrete system of equations (2.18a) and (2.18b) admits a moving kink solution with
constant profile for each value of the deformability parameter (r), and the reduced applied
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magnetic field (b). These moving solitons display a finite interval for the effective velocity
that varies from a minimal value of zero, which corresponds to the points on the abscissa
axis of the shape parameter (r), to a maximal speed with range [0.1, 0.5] given on the upper
curve. Thus, in these conditions the implicit kink (see equations (2.21)) solution used as
initial condition seems to represents good solution of a discrete lattice. From figure 2, we also
found that the effective speed of the solitary waves propagating increases with increasing shape
parameter. This can be understood in the sense that the kink profile is smoother when r tends to
unity; in contrast it has sharp angles when r tends to −1. This then suggests that the maximal
effective velocity is influenced by the discreteness effect. It is also interesting to note that if we
introduce the ideal sine–Gordon kink as an initial condition we will obtain the same result as
Peyrard and Remoissenet [39] in the case of a deformable atomic lattice. Here also, the shape
of the kink will progressively turn to that of the implicit soliton solution (see equations (2.21))
with small amplitude oscillations but, as we mentioned in [35], the highest values that can be
attained by the out-of-plane component do alter the stability of this kind of kink.

For all the deformability parameters, when the reduced applied magnetic field (b) is in the
range 0 � b < 0.1, then as soon as the initial condition is introduced in the chain it rapidly
transforms to a bi-kink shape that is really two kinks that are linked and, thus, moving in
opposite directions. It also follows from our simulations that, depending on the value of the
deformability parameter, the sizes of the two kinks can be equal or different. When the sizes of
two kinks are equal, the 2π bi-kink, while propagating, exhibits a two-π-kink motion scenario,
which is equivalent to an elastic collision that is produced in the middle of the chain and, due
to a periodic boundary condition, also at the chain’s end. This can be seen in figures 3(a) and
(b) where we have plotted the in-plane component as well as the out-of-plane component of
the spin wave propagating with a transparent collision motion, which is produced as a mutual
crossing. Figure 3(c) is a schema that illustrates very well the mutual crossing of the two
excitations engaged in the collision process. The contour plot of the time against the position
shows that it happens both at the chain’s end for the first time and the next time at its middle
and the processes continue in the same order, while the entire 2π-kink moves progressively.
However, when the sizes of the two sub-kinks are different, the same transparent collision
motion is produced but at different spin–lattice sites situated between the middle and the end
of the chain. We also noted in this latter case that the kink with greater size was more rapid
than the other one. Therefore, it was possible to find collision processes repeated many times
on the same side of the chain before changing. Figures 4(a) and (b) are shown to illustrate these
collision processes that happen when the in-plane component and the out-plane spin tilting are
propagating in the lattice. This multiple collision exhibited on the same side is well illustrated
in figure 4(b) where the out-of-plane component moves. Here, the wave represented by the
reversed pulse shape is faster than the wave represented by the upper pulse shape. Physically,
these multiple collisions exhibited by the sub-kink that arises in this range of parameters is the
consequence of the fact that the system displays an internal mode. This is the proof that the
property of the internal mode that is found in the dynamics of the one-component deformable
soliton model [38, 39] is also present in that of a deformable magnetic system where two
degrees of freedom are coupled.

3.2.3. Moving solitons on an oscillating background (nanopteron). In the study of the
interaction of a kink with small amplitude waves, several different behaviours can be
identified theoretically and numerically depending on whether we are in the continuum limit
approximation or we are taking into account lattice effects.

(i) Linear kink stability analysis reveals that there will be at least one bound state, representing
rigid translation of the kink (Goldstone mode). There may be further finite frequency
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Figure 3. Computer generated motion both for the in-plane (a) and out-of-plane (b) solitary
waves governed by the original discrete system of equations (2.5a) and (2.5b) for the deformability
parameter (r = −0.9) and the reduced magnetic field b = 0.013 with the initial velocity v = 0.52.
(c) The contour plot of the position of the two excitations engaged in the collision process against
time. The solid curve corresponds to the trajectory of the excitation initially positioned on the left-
hand side of the centre of the chain, while the broken curve corresponds to the second excitation
initially positioned on the right-hand side of the spin–lattice.
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Figure 3. (Continued.)

bound states describing localized kink oscillations. In addition, there will be a scattering
(kink-phonon)continuum. In fact, for sine–Gordon or φ4, the scattering problem is purely
reflectionless: the phonon dispersion is unchanged by the presence of a kink, whose only
effects are to produce an asymptotic phonon phase shift which depends on the velocity of
wave propagation [42, 43].
A number of computer simulations and theoretical studies have been made on the
importance of discreteness effects on the structural and dynamical properties of sine–
Gordon and φ4 chains. More recently, it has been shown that the discreteness effects that
are known to exist for topological solitons also exist for non-topological kink solitons in
nonlinear lattices.

(ii) Discreteness effects can lead to the damped oscillatory motion and the lattice pinning
effects (Peierls–Nabarro (PN) potential) of topological solitons, the adiabatic dressing of
kinks and the spontaneous emission of phonons [44, 45].

(iii) Supersonic solitons in monatomic chains can propagate at constant speed even if they are
very narrow and if they have very large amplitude. Unlike topological solitons, they do
not radiate any small amplitude oscillation and exhibit soliton-like properties even if their
width is of the order of the lattice spacing. However, numerical simulations have shown
a small energy loss when they collide [46].
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Figure 4. Plot of the time development of an exact solution of the continuum equation of motion
in the discrete spin for b = 0.03 and r = 0.4 and the velocity of the initial condition v = 0.5. (a)
In-plane component motion. (b) Out-of-plane component motion.

(iv) It has been also demonstrated, by numerical simulations, that the permanent radiation of
small amplitude oscillations is an essential characteristic of narrow subsonic solitons in a
monatomic lattice [46].

(v) Solitons in a diatomic chain exhibit discreteness effects, whatever their velocity, due
to the existence of an optical branch in the linear dispersion relation of such a lattice.
Consequently, a diatomic lattice cannot sustain narrow kinklike excitations with soliton
properties because they always lose energy by radiating optical oscillations [46].

(vi) Kinks propagate preferentially at well defined velocities which correspond to quasi-steady
states, while a kink moving at other velocities suffers relatively high rates of radiation of
small amplitude oscillation [31].
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(vii) By moving solitons on an oscillating background we mean waves that propagate with a
bound state of a self-trapped kink and a small amplitude wave with a nonlinear dispersion
law. When such waves move in our spin–lattice, the scenario exhibited by the nonlinear
excitation while propagating is that of a kink pinned to the (nonlinear) wave that decreases
its velocity (see figure 5(a)), and finally it turns out that this wave forces the kink to
propagate in a coupled way, i.e., some kind of dynamical self-trapping mechanism of
the resulting kink with the nonlinear wave. Figure 5(b) is a schema that illustrates the
kink profile of the in-plane component propagating with an oscillating tail, which is the
so-called ‘nanopteron’. A nanopteron is a permanent but non-local and spatially extended
soliton whose spatial radiation can only be minimized but not eliminated [47]. Otherwise,
whenever it could suffer from an exponential decay, it should happens very far away from
the kink. Here, the soliton motion occurs on a background of a nonlinear modulated and
oscillating wavetrain that can allow the kink to propagate in the discrete spin chain with any
constant subsonic velocity (see figure 5(a)), whenever the Peierls–Nabarro barrier exists.
The presence of the nanopteron is coherent with the one-component soliton model [41].
The existence of the radiation effects is noticeable for r approaching−1 with higher values
of the reduced magnetic field and disappears when r approaches the value 1. It is also
worth mentioning that this nonlinear wave appears with a small amplitude of A = 0.06
in dimensionless units with a multi-periodic shape constituted of a period for the rapid
oscillation and a period for the bumps that map the wavetrain’s shape.

3.3. Collision process of the solitons in the discrete deformable spin chain

We are mainly interested in the properties of a 2π-kink (or a 2π-antikink) when they collide in
order to determine their stability in a ferromagnetic chain under deformability effects. In order
to study the collisions of the in-plane and out-of-plane moving soliton components of the spin
deviations, we simulate the system of equation (2.18) with periodic boundary conditions for
the chain consisting of N = 200 spins. Using boundary conditions here is important because
it helps to avoid end effects. We still use the fourth order Runge–Kutta method with the same
accuracy as required for the single-soliton propagation. We choose initial conditions in the
same way as in the case of the single soliton; i.e., here we take a pair of the implicit kink (or
antikink) for the in-plane component and the derived pulses for the out-of-plane component
with opposite velocities from equations (2.21a) and (2.21c) and (3.4), respectively. In these
conditions the two solitary waves move towards each other for two spin components.

3.3.1. Head-on collision between a 2π-kink and a 2π-kink. When the two solitary waves
of 2π-kink type are involved in such a magnetic chain with the same velocities, if they are
displayed in opposite directions, they start by moving towards each other. Then, we observed
that the final state can be either dependent or not on the initial energy of the two excitations.
Depending on the range of the shape parameter (r), each of the two 2π-kinks faces either
a repulsive interaction or an attractive one. Three processes allowed for these collisions are
dictated by the parameter r . The two waves of 2π-kink type can pass through each other, or
be reflected elastically or non-elastically, or else they can form a standing or a nonstanding
bound state. For different values of the deformability parameter (r) with range ]−1, . . . , 0.4],
whatever the initial velocity chosen for a reduced magnetic field greater than b = 0.33, the
collision of the solitary waves of 2π-kink profile results in a strong inelastic interaction. The
scenarios displayed here by the two excitations consist of a completely destroyed shape when
they collide for the 2π-kink of the in-plane, but for the particular value of b = 0.33 and
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Figure 5. (a) Plot of the velocity of the nanopteron wave as a function of time showing a decreasing
behaviour that progressively tends to a constant value. (b) Plot of the shape of the nanopteron for
the in-plane component of the spin moving in a spin chain for the parameters r = −0.8, b = 0.32
and velocity v = 0.74.
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r = 0.4, while the 2π-kink shape is destroyed by the collision process, the resulting breathers
of the out-of-plane component face a mutual crossing with just slight radiation. Therefore,
in these ranges of parameters the system can support long time moving 2π-kink solitary
waves but without particle-like properties. For us, this is the signature of the fact that within
these parameter ranges the system does not admit a 2π-kink soliton solution and therefore
it is not integrable, but may be nearly integrable. When the deformability parameters with
range ] − 1, 1[ are used, for all reduced magnetic fields in the range 0 � b � 0.33, the
collision scenarios displayed by the two excitations correspond to a mutual crossing of each
other (see figures 6(a) and (b)). We notice from figure 6(b) that the out-of-plane component
moves with breather shapes instead of a simple pulse of the initial condition. The mutual
crossing phenomenon displayed by the two excitations is a good indication of the fact that,
in this range of parameters, the system appears to be integrable since the solitons’ robustness
is proved by the elastic collision process whenever their final shapes are different from those
of the initial conditions. Moreover, for the reduced magnetic field greater than b = 0.33, the
mutual crossing happens only for r � 0.7, while for the values of r with range ]0.4, . . . , 0.7[,
we observed most of the time an elastic reflection of the two excitations engaged in the collision
process. However, we found an unexpected scenario for the deformability parameter r = 0.6
and the reduced magnetic field b = 0.21, which behaves as a three-particle interaction resulting
from the collision process. Here we noted the presence of a nonlinear wave that helps to keep
a minimum distance between the two excitations of 2π-kink type. It then engages itself in the
collision processes after the first collision between the first two excitations. Here the motion
of the nonlinear wave is equivalent to that of an elastic string that is embedded between the two
kinks (antikink) and therefore it is subjected to compression or an extension of its length during
the collision. In figure 6(c), which is shown to illustrate this new phenomenon, we observed
that as soon as the initial conditions representing the two excitations are introduced in the
magnetic chain, they suddenly move toward each other and then, rapidly, the first collision
happens at time t = 3000. After that, an interaction of three-particle type is engaged as long
as the simulation process remains, with the domination of the compression and the extension
of the nonlinear wave, which intercalate between the resulting 2π-kinks. For instance, the
second extension, when the repulsive phenomenon dominates, happens between t = 12 000
and 20 000. Physically, this three-particle-like interaction is the consequence of the presence
of an internal vibrational mode of a particular type in the system. For a possible explanation,
let us recall that if the model is integrable, such as the sG model, the solitons’ motion may
slow down before the collision but they can overcome the repulsive barrier and pass through
each other. Here, the system is not integrable; the motion of the two kinks slows down more
because a part of their kinetic energy is transferred to the internal mode. As a result they cannot
pass through each other and stay at some minimum distance. The oscillation of their position
is likely to be due to the complex interactions of the two solitons which are in an excited state.
This example suggests that the internal mode of the solitons can play an important role in their
dynamics.

3.3.2. Head-on collision between a 2π-kink and a 2π-antikink. The results obtained from
the numerical computation of single-soliton dynamics and that of the collision processes of the
soliton with the same topological charge, described above, have given a valuable qualitative
description. However, for a quantitative description, we still need to simulate kink–antikink
head-on collision at different ranges of magnetic field and deformability parameters, for
allowed ranges of the initial velocities, through the discrete equations of motion (2.18a)
and (2.18b). The lattice size is still N = 200 and we work here with the same conditions
of parameters and numerical scheme as in the case of the two-2π-kink collision. The only
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Figure 6. Head-on collision for a 2π -kink and a −2π -kink (equivalent to a 2π -antikink and a
2π -antikink collision) for the spin motion of the in-plane component (a) and the derived pulse–
pulse collision of the out-of-plane spin motion (b) for the reduced magnetic field of b = 0.5 and the
deformability parameter of r = 0.5. (c) A three-particle interaction as a result of a head-on collision
between a 2π -kink and a −2π -kink (equivalent to a 2π -antikink and a 2π -antikink collision) for
the reduced magnetic field of b = 0.21, and the deformability parameter r = 0.6, with an initial
velocity of v = 0.52.

difference comes from the opposite sign on the topological charge of the initial conditions.
The initial positions of the two excitations are chosen with a distance of 100 spin–lattice sites
in order to avoid any possible interference between them at the beginning of the process. Note
that for all the simulations, the processes were more rapid for r > 0 than in the case of r < 0.
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Figure 6. (Continued.)

This is in agreement with figure 2 where we plotted the velocities against the deformability
parameter. So, in order to accelerate the process for a while, for negative values of r , it was
necessary to choose a higher order of initial velocities of v � 0.7.

Let us first present figures 7(a) and (b) where we plotted the in-plane and the out-of-plane
spin component collision processes, for r = −0.3 and b = 0.45 with initial velocity v = 0.4,
respectively. These figures display a reflective phenomenon after any collision for the in-plane
spin component, whereas the out-of-plane component is flipped (see figure 7(b)). Note that
this phenomenon is also possible with a faster process for r = 0.6 and 0.3 � b � 0.65 with
v = 0.34. We also observed a few radiations of small amplitude waves on the shapes of the
out-of-plane component after each collision. This reflective phenomenon is a good indication
of the fact that the soliton obtained in this range of parameters can propagate and survive
for a long time whenever it interacts with another soliton. This is also an indication of the
fact that the discrete system of equations (2.18) is at least nearly integrable. Figure 8(a) is a
schema obtained for r = −0.8, b = 0.1, when the initial velocity is v = 0.9 that illustrates the
creation of a radiationlessly standing bound state of a 2π-kink and a 2π-antikink after their
collision; this phenomenon can happen for the initial velocities with range 0.84 � v � 0.93.
This can be understood by the fact that, as long as the kink and antikink are sufficiently far
apart, there is no radiation visible. So in such a condition, radiation losses are negligible. For
the same parameters, figure 8(b) also illustrates at exactly what time each of the excitations
stops moving and remains static as long as the process is produced. This is a good indication
of a non-elastic but attractive interaction of the two excitations in the deformable spin chain.
Since there is no internal oscillation observed, we have deduced that this is a zero-frequency
translational mode formation. It is needless to mention the fact that, for the same value of the
deformability parameter i.e. r = −0.8 and the reduced magnetic field, there is a window for
the reduced velocities in the range 0.94 � v � 0.99 where the collision process of the two
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Figure 7. Head-on collision for a 2π -kink and a−2π -antikink for the spin motion for the parameters
r = −0.3 and b = 0.45 with the initial velocity of v = 0.4: (a) in-plane component motion, where
we observe an elastic collision that is produced as a reflective process for each of the two excitations;
(b) out-of-plane component motion, where we observe an elastic collision that is produced as a
reflective process for each of the two excitations but with a reversion of the orientation of their
amplitude after each collision.
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excitations results first in a breather formation that finally disintegrates in the chain. Thus,
these velocity windows for a collision process lead to an annihilation phenomenon. This strong
pinning of the two kinks is also displayed in the dynamics of the one-component deformable
soliton model [38, 39]. For the parameters r = 0.9, b = 0.5 and v = 0.65, we observe
in figures 9(a) and (b) that, with periodic boundary conditions, the first collision happens at
the chain’s end. After this first collision, the in-plane spin component comes out with a new
shape, which is constituted of a new kink shape with a reduced size very close to that of a
π-kink. Then, the resulting solitons continue the collision process both at the middle and at
the chain’s end with some slight radiations. But these radiations do not alter the collision
processes because, after any collision, these solitons with new shapes display a very robust
behaviour. The out-of-plane component also displays a robust behaviour through the collision
process with a scenario of mutual crossing without flipped shape while keeping the same size.
Therefore, this is a good indication that with these parameters soliton solutions exist for the
discrete system of equation (2.18), whenever their shape may differ from those of the initial
conditions. From figures 10(a) and (b), we do observe a scenario of four-particle interactions
as a result of a collision process engaged between the two excitations of the different spin
components. It is clear from these figures that, when the in-plane excitations are introduced
in the chain, some time later, while moving towards each other, each of them is divided into
two excitations moving in opposite directions. Therefore, the collision scenario becomes that
of a kink and an antikink that are the first to collide at the middle of the chain. At the same
time, the two other excitations engaged in the collision process display opposite directions
while moving and this would lead to their collision at the end of the chain. The same collision
scenario occurs for the initial two excitations engaged for the out-of-plane component. The
difference here comes from the fact that within the four-particle interactions, the first couple of
excitations that first faced the collision displays a reversed pulse shape while the second couple
of excitations displays the ordinary pulse shape. We also notice for the two spin components
that the first couple of excitations that first faced the collision at the middle of the chain does
collide with the other excitations of the second couple before the second couple finally faces
its first collision. Hence, the first couple’s motion is faster than that of the second couple.

4. Summary and concluding remarks

Since the previous studies on the numerical simulations of the soliton dynamics in a rigid
Heisenberg chain [5, 48] were fairly complete and that of a deformable magnetic chain [35]
involved a tremendous amount of numerical calculation, it is not our aim here to perform
similar studies on the deformable spin model. For instance, Etrich et al [48] have shown
that in the discrete ferromagnetic spin chain two essentially different static in-plane soliton
structures may occur: one with its centre located on a lattice site, the so-called central-spin
configuration, and the other with its centre located in the middle between two neighbouring
spin–lattice sites, which is the so-called central-bon configuration. This kind of specification
arises from a deep study of the discreteness effects on the soliton dynamics. We will address
these problems in a future publication. Here, we only wanted to stress a few points that bring
new features to the soliton dynamics in a ferromagnetic chain when the deformability effects
are considered.

Finally, to summarize, we have been able to examine the limit of the validity of the
implicit soliton solution by a numerical computation in a classical deformable easy-plane
ferromagnetic chain of the Heisenberg model, for the deformability parameter in the range
of −1 < r < 1. Modifying the Zeeman energy of a Heisenberg chain, we have analysed
the nonlinear dynamics of the soliton structures taking the model of CsNiF3 material as a
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Figure 8. (a) Creation of a standing bound state of a 2π -kink and a 2π -antikink after their collision
for deformability parameter r = −0.8 and the reduced magnetic field b = 0.1 with initial velocity
v = 0.9. (b) Contour plot of the positions against time of the two excitations engaged in the
collision process. This schematic diagram illustrates at exactly what time each of the excitations
stops moving and remains static as long the process is produced.

particular example. The different simulations of the single soliton’s propagation point out
that, for some particular values of the deformability parameters, the motion of the kink (in-
plane component) on a double periodic oscillating background can happen for any subsonic
velocity in a discrete ferromagnetic chain under deformability effects. From a physical point
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Figure 9. (a) Creation of new kink and antikink solitons with reduced shape after the first collision
of the initial conditions for deformability parameter r = 0.9 and the reduced magnetic field b = 0.5
with initial velocity v = 0.6. (b) Mutual crossing of the out-of-plane spin component during the
colliding processes of the two excitations with size conserved and no flipping shape.

of view, this kind of motion that is conducted by the nanopteron wave type is the result of a
nonlinear interaction of a kink with a wave propagating along the chain. From this interaction,
it happens that a bound state of a kink and the wave is created in such a way that the wave
pushes the kink, on the one hand, and the wave is finally pinned to the kink, on the other
hand. Therefore, some kind of dynamical self-trapping of a kink and the wave takes place.
This mechanism finally reduced the bound state velocity to that of a subsonic wave. It has
also been possible to find a non-oscillating kink for the in-plane spin component angle and the
corresponding pulse for the out-of-plane spin component angle as a solution of the nonlinear
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Figure 10. Collision process for the in-plane and the out-of-plane components for the parameters
r = 0.8, b = 0.02 and initial velocity v = 0.52. (a) From the two initial excitations we came out
with a four-particle interaction constituted of two couples of a kink and an antikink. (b) From the
two initial excitations we came out with a four-particle interaction constituted of two couples of
pulses with flipped shapes.
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discrete coupled equations of motion for the magnetic chain. This is possible only for some
finite number of preferred velocities and suitably chosen deformability parameters. A similar
result for a moving kink concerning the discrete spectrum of the velocity has been obtained
in [49] for a modified φ4 model where one explicit kink solution is known. We also noticed
from the kink–kink interaction that it was possible to find a moving or standing bound state
of the same topological charge Q = ±1 to form a soliton of higher topological charge. These
moving bound states display a free propagation behaviour and this was first discovered by
Peyrard and Kruskal [31]. They interpreted this as a resonance interaction. We have also
realized that the presence of an internal mode may result in a three-particle-like interaction
that manifests itself with an alternation between an attractive and a repulsive interaction that
happens between the two excitations of kink type engaged in the collision while keeping a
minimum distance between them. Within this minimum distance is located a nonlinear wave
whose length varies from a minimum to the maximal values. Moreover, from kink and antikink
interaction simulations, we have obtained on the one hand a standing bound state of a kink
and antikink, and on the other hand a four-particle interaction. This four-particle interaction is
obtained as result of the creation of a second pair of a kink and an antikink of reduced size (for the
in-plane component) and a second pair of pulses moving towards each other for the out-of-plane
component. The final collision scenario is that of four excitations of soliton type interacting
in the magnetic chain for both of the spin components. Most of the bound states described
above show that the dynamics of the two-component magnetic system preserves the properties
of the one-component deformable soliton model [39, 41]. Hence, the other new processes
described above are features of deformability effects on discrete deformable ferromagnets.
Thus, the existing results demonstrate the importance and the potential of a simple, intuitive and
physically appealing picture, which, even if it might not be quantitatively correct, reasonably
describes the complex dynamics and certainly stimulates further experiments on magnetic
model systems. The fundamental question for the existence of the implicit soliton in a one-
dimensional magnet, as suggested by our theory, appears to have been answered positively
by our numerical experiments. Further computational, experimental and theoretical efforts
should now aim at the investigation of details of these implicit soliton-like bearing systems.
This in particular calls for more theoretical work to establish an analytical expression of the
critical magnetic field (which is actually very difficult to derive) for these implicit solitons
and compare it to its corresponding numerical value. We also expect that an important role of
this modified Zeeman energy in our magnetic model for future investigations, both theoretical
and experimental, will be to clarify the transition between the ballistic, the stochastic and
the diffusive behaviour for the dynamics [35], and investigate a possible induction of phase
transition for the thermodynamics in a 1D Heisenberg model.

In order to give indication of possible experiments, we should recall that harmonic
generation has become more and more important in efficiently generating new frequencies
for various applications. In this way, Bhattacharya et al [50] have reported results of an
experiment that uses the generation of harmonics of a low frequency and small amplitude
modulation signal to probe the nature of nonlinearity associated with the standard current–
voltage measurement and determines the form of the current carried by the charge-density-wave
conductor NbSe3 near the threshold. The harmonic-generation experiment was performed by
adding a small (6 µA) ac current source from a Hewlett-Packard model HP3562 A dynamic
signal analyser at typically 100 Hz. The critical exponent obtained in this experiment is
consistent with a cooperative dynamical critical phenomenon involving many degrees of
freedom of a deformable charge-density wave [51, 52]. Also, Gullikson and Mills [53]
reported measurements of the positronium work function as a function of temperature and
used it to derive the positron deformation potential for Al. The experiments were performed
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using a magnetically guided beam of slow positrons in an ultrahigh vacuum chamber with a
base pressure of 2×10−10 Torr. In addition, in the context of nonlinear crystals, backward
second-harmonic generation (SHG) has been observed using subpicosecond and nanosecond
laser pulses in periodically poled lithium niobate crystals [54]. Furthermore, backward third-
harmonic generation (THG) based on cascaded second-order nonlinear processes [55] has
been also observed. In this THG, the first crystal is used for sum-frequency generation.
Since the cascaded second-order nonlinear process was demonstrated [56], higher order
harmonics [57] have also been observed via cascading. It should be noted that the harmonic
generation coincided with the significantly improved high quality nonlinear optical materials
such as KH2PO4 (KDP) and KTiOPO4 (KTP), as well as discoveries of new materials such
as β-BaB2O4 (BBO) and LiB3O3 (LBO). Concerning soliton theories in magnetic systems,
most of the experimental apparatus in these studies have been described previously [5].
CsNiF3 is the prototype of a quasi-one-dimensional ferromagnetic compound and has been
investigated in detail using many different experimental methods, such as susceptibility
measurements [58–61], neutron diffraction [62, 63], specific heat measurements [59] and
inelastic neutron scattering [64, 65]. However, while for rigid magnetic systems the different
proposed models have easily found experimental verifications, in the deformable case there
are not yet experimental counterparts to the few theoretical proposals [34, 38, 39, 41]. These
experimental investigations of deformable solitons have been hampered by the apparent need
for nanomagnets and experimental apparatus to produce deformability. For example, time-
dependent modulation of the bias energy can be achieved by an ac electric field coupled to
the dipole moment of the two-state system, or in a superconducting quantum interference
device (SQUID) ring device, by a time-dependent external field threading the ring. In contrast,
‘quadripole’-like couplings induce a variation of barrier height and width and thus lead to a
modulation of the tunnelling matrix element (TME). Promising candidates to study the effects
of concerned harmonic modulation of the bias and TME are the variable barrier rf SQUID
ring [66, 67] and magnetic molecular clusters in longitudinal and transverse ac magnetic
fields [68] such as Mn12 [69] and Fe8 [70] nanomagnets. However, the deformable effect is
a more complicated physical phenomenon and appears to constitute an interesting laboratory
for the examination of deformable models via parametric process (quasi-phase matching) and
parametric modulational instability. Again the experimental activity also seems to be growing
on account of the existence of out-of-plane instabilities as well as a soliton spectrum quite
different from the sG results.
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